SPR 4106 Syntax and semantics in formal terms

Chapter 5 "Composing Extensions": 5 Essentials

KJS

April 9, 2015

Composing Extensions: Principle of Compositionality

The extension of a mother is a function of the extensions of the two daughters and the way these two extensions are composed

- For any $s, \llbracket \mathrm{a}+\mathrm{b} \rrbracket_{s}$ is uniquely determined by
(i) $\llbracket a \rrbracket_{s}$,
(ii) $\llbracket \mathrm{b} \rrbracket_{s}$, and
(iii) the composition principle in use between the two.

Ideally, (iii) follows from the types of $\llbracket \mathrm{a} \rrbracket_{s}$ and $\llbracket \mathrm{b} \rrbracket_{s}$
(and the order of a and b is immaterial)

Composing Extensions: Composition Principles

$$
\llbracket \mathrm{a}+\mathrm{b} \rrbracket_{s}= \begin{cases}1 \mathrm{iff} \llbracket \mathrm{a} \rrbracket_{s} \in \llbracket \mathrm{~b} \rrbracket_{s} & \text { if } \mathrm{a} \text { is an RT and } \mathrm{b} \text { is a VP } \\ \llbracket \mathrm{a} \rrbracket_{s} * \llbracket \mathrm{~b} \rrbracket_{s} & \text { if } \mathrm{a} \text { is a TV and } \mathrm{b} \text { is an RT } \\ \llbracket \mathrm{b} \rrbracket_{s} * \llbracket \mathrm{a} \rrbracket_{s} & \text { if } \mathrm{a} \text { is an } \mathrm{FN} \text { and } \mathrm{b} \text { is an RT } \\ \llbracket \mathrm{a} \rrbracket_{s} \cap \llbracket \mathrm{~b} \rrbracket_{s} & \text { if } \mathrm{a} \text { is an } \mathrm{A} \text { and } \mathrm{b} \text { is an } \mathrm{N}^{1}\end{cases}
$$

$\mathrm{VP}=$ verb phrase, $\mathrm{TV}=$ transitive verb, $\mathrm{RT}=$ referential term,
$\mathrm{FN}=$ functional noun, $\mathrm{A}=$ adjective, $\mathrm{N}=$ noun

There are two versions of the principle plugging in, $*$:

- $R * y=\{x:\langle x, y\rangle \in R\}$
- $y * R=\{x:\langle y, x\rangle \in R\}$

Composing Extensions: Composition Principles

Alternative: reduce the two versions of $*$ to one
$\llbracket \mathrm{a}+\mathrm{b} \rrbracket_{s}=\llbracket \mathrm{b}+\mathrm{a} \rrbracket_{s}=\ldots \llbracket \mathrm{a} \rrbracket_{s} * \llbracket \mathrm{~b} \rrbracket_{s}=\left\{x:\left\langle\llbracket \mathrm{b} \rrbracket_{s}, x\right\rangle \in \llbracket \mathrm{a} \rrbracket_{s}\right\}$
if a denotes a relation between two individuals
(that is, it is a transitive verb or a relational noun or adjective) and b denotes an individual (that is, it is a referential term)

Examples: aimer, amante, amoureuse
\llbracket aimer + Chopin $\rrbracket_{s}=\llbracket$ amante/amoureuse $+($ de $)$ Chopin $\rrbracket_{s}=$
$\left\{x:\left\langle\llbracket\right.\right.$ Chopin $\left.\rrbracket_{s}, x\right\rangle \in \llbracket$ aimer/amante/amoureuse $\left.\rrbracket_{s}\right\} \approx$ $\{x: x$ loves c in $s\}$

The Composition Principle Functional Application: The Definite Article

The definite article denotes a relation which is a function:

- \llbracket the $\rrbracket_{s}=\{\langle X, y\rangle: X=\{y\}\}$
- Plugging in would make it (almost) meaningless:

$$
\llbracket \text { the } \rrbracket_{s} * \llbracket \text { moon } \rrbracket_{s}= \begin{cases}\text { the empty set } & \text { if } \mid \llbracket \text { moon } \rrbracket_{s} \mid \neq 1 \\ \llbracket \text { moon } \rrbracket_{s} & \text { if } \mid \llbracket \text { moon } \rrbracket_{s} \mid=1\end{cases}
$$

- But Functional Application gives the right result:

$$
\llbracket \text { the } \rrbracket_{s}\left(\llbracket \text { moon } \rrbracket_{s}\right)= \begin{cases}\text { undefined } & \text { if } \mid \llbracket \text { moon } \rrbracket_{s} \mid \neq 1 \\ \measuredangle & \text { if } \mid \llbracket \text { moon } \rrbracket_{s} \mid=1\end{cases}
$$

Like nouns, adjectives normally denote sets of individuals, and the extension of the merge of an adjective and a noun is the intersection between the two sets:

The pink section is the extension of \llbracket red + sock \rrbracket_{s},

$$
\llbracket \mathrm{red} \rrbracket_{s} \cap \llbracket \text { sock } \rrbracket_{s}
$$

